欢迎光临苏州东锜精密模具材料有限公司,skh9、skh51、skh55、skh59高速钢。
产品知识
联系我们
销售热线:
Contact Hotline
0512-66159259 0512-66159259
传真:0512-66159259

E-mail:TOKAI@TOKAIS.NET

公司地址:苏州相城黄埭高新区东桥聚民路68号
当前位置: 首页>>新闻资讯>>产品知识
非标h13模具钢是啥材质
发布时间:2023-06-14 11:30:21

  模具钢购买的时候你会发现价格并不是统一固定的,有的地方会高一些,有的地方可能会便宜一些,但实际报价还是要看厂家和产品质量。毕竟贪小便宜买劣质。模具钢结果往往得不偿失。我建议大家在实际购买的时候,一定要严格按照相关标准购买,去专业正规的厂家购买。0.320.45

  0.801.20

  4.755.50

  1.101.75

  0.801.20

  ≤0.03

  ≤0.03

  淬火:790度±15度预热,1000度(盐浴)或1010度(炉控气氛)±6度加热,保温515分钟,空冷,550度±6度回火;退火和热加工;

  钢中的碳含量决定了淬火钢的基体硬度。根据钢中碳含量与淬火钢硬度的关系曲线可知,H13钢的淬火硬度约为55HRC。对于工具钢,钢中的一部分碳进入钢基体,引起固溶强化。另一部分碳将与合金元素中的碳化物形成元素结合,形成合金碳化物。堆热佐模具钢这种合金除了有少量的残余碳化物外,还需要在回火时弥散析出在淬火马氏体基体上,产生二次硬化现象。因此,热加工由均匀分布的残余合金碳化合物和回火马氏体的结构决定。模具钢的表现。可见钢中C的含量不能太低。

  含0.5%Cr的H13钢应具有较高的韧性,因此其C含量应保持在形成少量合金C化合物的水平。Woodyatt和Krauss指出,在870℃的Fe-Cr-C三元相图上,H13钢的位置在奥氏体A和(A+M3C+M7C3)三相区的交界处较好。C的相应含量约为0.4%。由于C或Cr含量的增加而具有更高耐磨性的A2和D2钢也被标记用于比较。此外,重要的是保持C含量相对较低,使钢的Ms点处于相对较高的温度水平(H13钢的Ms数据约为340℃),这样当钢淬火至室温时,可获得以马氏体为主、少量残余A和残余均匀分布的合金碳化物组织,回火后, 它可以获得均匀的回火马氏体组织。避免在工作温度下使过多的残余奥氏体转变而影响工件的工作性能或变形。这些少量的残余奥氏体应该在淬火后的两次或三次回火中完全转变。顺便提及,H13钢淬火后获得的马氏体结构是板条M+少量薄片M+少量残余A..国内学者对回火后M带析出的细小合金碳化物也做了一些工作。

  众所周知,增加钢中的碳含量会提高钢的强度。模具钢一般来说,它会提高高温强度、热硬度和耐磨性,但会导致其韧性下降。学者们通过对比工具钢产品手册中各种H型钢的性能,明确证明了这一观点。一般认为,导致钢的塑性和韧性下降的碳含量界限是0.4%。因此,要求人们在钢的合金化设计中遵循以下原则:在保持强度的前提下,尽可能降低钢的含碳量。有资料建议,当钢的抗拉强度在1550MPa以上时,碳含量应为0.3%-0.4%。H13钢的强度Rm为1503.1 MPa(在46 HRC下)和1937.5 MPa(在51 HRC下)。

  对于需要更高强度的高温作业模具钢采用的方法是在H13钢成分的基础上增加Mo含量或碳含量,这将在后面讨论。当然,韧性和塑性略有下降是可以预期的。

  2.2铬:铬是合金工具钢中更常见、更廉价的合金元素。美国的h型热加工模具钢铬的含量在2%至12%的范围内。我国合金工具钢(GB/T1299)的37个钢种中,除8CrSi和9Mn2V外,均含有Cr。铬对钢的耐磨性、高温强度、热硬度、韧性和淬透性有有益的影响。同时,它在基体中的溶解将显著提高钢的耐腐蚀性。H13钢中含有Cr和Si会使氧化膜致密,提高钢的抗氧化性。然后分析了Cr对0.3C-1Mn钢回火性能的影响,并添加了Cr的加入量。<6% Cr对提高钢回火抗力是有利的,但未能构成二次硬化;当含Cr>6%钢淬火后在550℃回火会产生二次硬化效应。人们对热加工钢感兴趣模具钢一般选择添加5%的铬。

  工具钢中的铬一部分溶解在钢中进行固溶强化,另一部分与碳结合,根据铬含量以(FeCr)3C、(FeCr)7C3和M23C6的形式存在,从而影响钢的性能。此外,还应考虑合金元素的相互作用,如当钢中含有铬、钼和钒时,Cr>3%。[14]Cr可以阻止V4C3的形成,延缓Mo2C的共格沉淀。V4C3和Mo2C是强化相,提高钢的高温强度和抗回火性能。[14]这种相互作用提高了钢的耐热变形性。

  铬溶解在钢的奥氏体中以增加钢的淬透性。像铬一样,铬、锰、钼、硅和镍都是增加钢的淬透性的合金元素。人们习惯用淬透性系数来表征它。一般来说,中国现有的数据[15]只使用了格罗斯曼的数据。后来,Moser和Legate [16,22]进一步工作,提出由C含量和奥氏体晶粒尺寸决定的基本淬透性直径Dic和由合金元素含量决定的淬透性系数(如图3所示)可用于计算合金钢的理想临界直径Di,也可由下式近似计算:

  didic×2.21 Mn×1.40 si×2.13 Cr×3.275 mo×1.47 ni(1)

  (1)式中,各合金元素以质量百分比表示。从这个公式中,人们对铬、锰、钼、硅和镍对钢淬透性的影响有了相当清楚的半定量认识。

  铬对钢共析点的影响与锰相似。当Cr含量为5%左右时,共析点的C含量下降到0.5%左右。此外,Si、W、Mo、V和Ti的加入能显著降低共析点C的含量。因此,我们可以知道:动火作业模具钢和高速钢同样属于过共析钢。共析C含量的降低会增加奥氏体组织和更终组织中合金碳化物的含量。

  钢中合金碳化合物的行为与其自身的稳定性有关。事实上,合金c-化合物的结构和稳定性与相应c-化合物形成元素的D-电子层和S-电子层的缺电子有关[17]。随着缺电子的减少,金属的原子半径减小,碳和金属元素的原子半径比rc/rm增大,合金C-化合物由间隙化合物变为间隙化合物,C-化合物的稳定性减弱,其对应的熔化温度和溶解温度在A中降低非标准h13。模具钢生成自由能的值减小,相应的硬度值减小。面心立方晶格的VC碳化物稳定性高,在℃左右开始溶解,在1100℃以上开始大量溶解(溶解结束温度为1413℃)[17]; 它在℃回火时析出,不易聚集长大,可用作钢中的强化相。由中等碳化物形成元素W和Mo形成的M2C和MC碳化物堆积致密,晶格简单六方,不稳定,但也具有较高的硬度、熔点和溶解温度,在该温度范围内仍可作为钢的强化相使用。M23C6(如Cr23C6等。)具有复杂的立方晶格,稳定性较差,结合强度较弱,熔点和溶解温度较低(1090℃时溶于A中),稳定性较高(如(CrFeMoW)23C6)只有在少数耐热钢中综合合金化后才能作为强化相。具有复杂六方结构的M7C3(如Cr7C3、Fe4Cr3C3或Fe2Cr5C3)稳定性较差,与Fe3C碳化物一样容易溶解析出,具有较大的聚集生长速率, 所以不能作为高温强化相[17]。

  我们可以从Fe-Cr-C三元相图中简单地了解H13钢中的合金碳化物相。根据700℃[1820]和870℃[9]的Fe-Cr-C三元等温截面相图,在含0.4%的钢中,随着Cr含量的增加,会出现(FeCr)3C(M3C)和(CrFe)7C3(M7C3)的合金碳化物。注意,M23C6仅在870℃图上Cr含量大于11%时出现。另外,根据Fe-Cr-C三元系在5%Cr时的垂直截面,含0.40%C的钢在退火状态下为α相(约1%Cr)和(CrFe)7C3合金碳化物。加热到791℃以上,奥氏体A形成并进入(α+A+M7C3)三相区,在795℃左右进入(A+M7C3)两相区。在970℃左右,(CrFe)7C3消失,进入单相A区。当基体包含c含量时<0.33%时,在793℃左右才存在(M7C3+M23C6和A)的三相区,在796℃进入(A+M7C3)区(0.30%C时),以后一直保持到液相。钢中残留的M7C3有阻止A晶粒长大的作用。Nilson提出,对1.5%C-13%Cr的成分合金,欠稳定(CrFe)23C6不形成[20]。当然,单以Fe-Cr-C三元系分析会有一些偏差,要考虑加入合金元素的影响。苏州东锜公司的战略合作伙伴,法国ERASTEEL钢厂是全球粉末高速钢的研发者、粉末冶炼技术的赢领者、ASP品牌的创造者;塑胶及压铸钢材合作伙伴,德国葛利兹钢厂,成立于1779年,在全球拥有庞大的销售网络和过硬的技术力量,锻造能力强,处于行业赢领地位。

本文部分内容来源于网络,我们仅作为信息分享。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,请发送邮件至tokaits@163.com举报,一经查实,本站将立刻删除。